

INTERNSHIP REPORT 2019

CO-OP AIDE / GPIP Intern
Electrical & Computer Engineering

The University of Illinois at Chicago

Academic Supervisor
Professor
Zhichun Zhu
zzhu@uic.edu

Supervisor/Mentor
Ph.D. Student
Muhammad Rafique
mrafiq2@uic.edu

Submitted By
Jim Palomo
jpalom6@uic.edu

Date of Submission: August 7, 2019

UNIVERSITY OF ILLINOIS
AT CHICAGO

Preface & Acknowledgement

For 8 weeks from June 20, 2019, to August 7, 2019, I did an internship at the University

of Illinois at Chicago, a public research university located in the heart of Chicago. The

University of Illinois at Chicago is a Research I university. At this internship, I worked

under the COE Department of Electrical and Computer Engineering. This was my very

first internship and relatable work experience in the field.

Figure 0.1 - gem5 diagram for simulated output, copied from [1]

The assigned project that I worked on is an open simulation platform for computer

system architecture, called gem5. The main objective of gem5 is to create simulated

computers and analyze data that is outputted. The possibilities that gem5 produces allows

for computer architecture researchers is endless. Data that is gathered includes but is not

limited to runtimes, microarchitecture analysis, and event-driven simulations. Computer

architecture is a subfield in computer engineering and is something that was both familiar

and new to me. Throughout my internship, I gained valuable knowledge in the field of

 1

computer architecture and thus enhanced my professional skills. I learned the necessary

tools to approach this project by self-learning and with the assistance of my mentor.

I truly value the opportunity that I was given and those who have helped me get here. I

am thankful for Muhammad Rafique, my supervisor/mentor at this internship. Mr.

Rafique has guided me throughout this internship. Mr. Rafique is currently pursuing a

Ph.D. in computer engineering. Mr. Rafique’s research topic correlates with computer

architecture and thus, he works on gem5 simulations. Mr. Rafique gave me the necessary

tools to assist me with this project. Mr. Rafique gave me beneficial one-to-one meetings

that ended up fixing issues that I had with my code, an insight in the field and from a

pursuing Ph.D. student, and much more. In regards to thank those that have helped me

along, I can not forget to acknowledge Professor Zhichun Zhu, a professor who

specializes in her research on computer architecture, parallel and distributed computer,

and performance modeling and evaluation. Ms. Zhu has a Ph.D. in CS from the College

of William and Mary and B.S. in CE from Huazhong University of Science and

Technology. Ms. Zhu was the individual who assigned me to Muhammad and the project

at hand.

I have gained a profound amount of knowledge from this internship. The knowledge that

I acquired will benefit myself and those around me for the professional world. Moreover,

I would like to give my gratitude to those that have had an impact on offering this

opportunity. Without them, I would not have had this opportunity: Yossi Hernadez, Mona

Hurt, Rosemarie Coppola-Conroy, College of Engineering, Department of Electrical and

Computer Engineering, and the University of Illinois at Chicago.

 2

Table of Contents

List of Figures ………………………………………………………………………….. 4

List of Tables …………………………………………………………………………… 4

List of Abbreviations …………………………………………………………………… 5

gem5 Resources ………………………………………………………………………… 5

Chapter 1: Introduction ​………………………………………………………………. 6

1.1 Introduction to gem5 ………………………………………………………... 6

1.2 History of gem5 ……………………………………………………………... 6

Chapter 2: Getting Started ​……………………………………………………………. 7

2.1 Learning Python & C++ …………………………………………………….. 7

Chapter 3: Starting gem5 ​……………………………………………………………… 9

3.1 Simple configuration script ………………………………………………….. 9

3.2 Adding cache to the configuration script ……………………………..……. 11

3.3 Statistics, outputs, and using default configuration scripts ………………… 13

Chapter 4: Modifying and Extending gem5 ​………………………………………… 13

4.1 Setting gem5 development environment with style guidelines ……………. 13

4.2 Creating a simple SimObject ………………………………………………. 14

4.3 Debugging gem5 …………………………………………………………… 16

4.4 Event-driven programming ………………………………………………… 17

4.5 Adding parameters to SimObjects …………………………………………. 18

4.6 Creating a memory system …………………………………………………. 19

4.7 Creating a cache object …………………………………………………….. 20

Chapter 5: Full System Simulation ​………………………………………………….. 21

5.1 Full system mode …………………………………………………………... 21

Conclusion ​…………………………………………………………………………….. 22

References ​……………………………………………………………………………... 23

 3

List of Figures

Figure 0.1 - gem5 diagram for simulated output, copied from [1] ………………….….. 1

Figure 0.2 - Running simple configuration script, copied from [11] ………………....... 10

Figure 0.3 - Diagram of simulated architecture made from the simple configuration

file, copied from [12] …………………………………………………………………... 10

Figure 0.4 - System with two-level hierarchy, copied from [14] ………………………. 11

Figure 0.5 - Running simple configuration file with caches, copied from [15] ……....... 12

Figure 0.6 - Addition of a L1 & L2 Cache, copied from [16] ………………………..... 12

Figure 0.7 - Creating a configuration file, copied from [18] …………………………... 14

Figure 0.8 - Creating a header file, copied from [19] ………………………………….. 15

Figure 0.9 - Creating an implementation file, copied from [20] ……………………….. 15

Figure 1.0 - Creating a Sconscript, copied from [21] ………….………………………. 16

Figure 1.1 - Creating a run script configuration file, copied from [22] ………………... 16

Figure 1.2 - Debug flags example running simple config script, copied from [23] …… 17

Figure 1.3 - Event-driven programming, copied from [24] …………………………..... 18

Figure 1.4 - Adding parameters number-of-fires & time-to-wait, copied from [25] …... 18

Figure 1.5 - Master and slave ports, copied from [27] …………………………………. 19

Figure 1.6 - Difference when adding a cache obj, copied from [28] …………………... 20

Figure 1.7 - Diagram of cache object, copied from [29] ………………………………. 20

List of Tables

Table 0.1 - Table of access modifiers & their capable inheritance, copied from [9] ……. 8

 4

List of Abbreviations

COE College of Engineering

ECE Electrical & Computer Engineering

CS Computer Science

CE Computer Engineering

UIC University of Illinois at Chicago

OOP Object-Oriented Programming

CPU Central Processing Unit

JSON JavaScript Object Notation

gem5 Resources
Contributors https://dl.acm.org/citation.cfm?doid=2024716.2024718

Book http://learning.gem5.org/book/index.html

My gem5 Repository https://github.com/JimPalomo/gem5-dev

 5

Chapter 1

Introduction

When individuals think about computers, they think of the box-shaped pc. However, the

concept of computers is everywhere, right in the palm of our hand. Many individuals

carry around a computer known as a smartphone. This is a miniaturized computer that is

more powerful than the computers in the 1960s that launched the Apollo-11 to the moon

[2]. The reason for the technological evolution is due to Moore’s Law, the principle for

which the overall processing power of computers doubles every two years [3]. The way

Moore’s Law works is due to computational research on the architecture of computers.

Computer architecture research is conducted in many ways. However, nowadays research

the architecture of computers is done through simulations using software.

1.1 Introduction to gem5

The software that was used throughout my internship at UIC is gem5, a full-blown

computer system simulator platform which includes processor microarchitecture. This

software is mainly used by researchers in the computer architecture subfield. There is a

distinguishable amount of capabilities that gem5 possesses. gem5 allows for components

to be created, extended, rearranged, and parameterized. Moreover, gem5 allows the

ability to simulate a series of timed events known as event-driven programming. gem5

has the option to simulate more than one computer [4], [5].

1.2 History of gem5

The history of gem5 was not one but two separate stories combined. gem5 was created by

two different companies, Michigan m5 & Wisconsin GEMS. Together these two

companies formed the simulation platform known as gem5. Key contributors include but

 6

are not limited to Nathan Binkert, Bradford Beckmann, Gabriel Black. A full

comprehensive list of contributors is available under gem5 resources [6].

Chapter 2: Getting Started

2.1 Learning Python & C++

The way I learned the operations of gem5 did not start by diving straight into gem5. I

began by learning the fundamentals of Python and C++. This lasted from June 20th - July

2nd, almost 2 weeks. Within this course of time, I covered the very basics, syntax, and

how information is passed for both of these programming languages. The following are

basic concepts that I covered: variables, data types, strings, user input, arrays, functions,

return, conditionals, loops, 2D arrays & nested loops, and pointers. The main objective

was to learn these languages before starting gem5 but I had to gain a deeper

understanding of the infrastructure of gem5. Therefore, I also had to learn about

object-oriented programming for both languages. The following are OOP concepts that I

covered: classes & objects, constructor & destructors, object functions, getters & setters,

inheritance, access modifiers, member initialization, composition, this, operator

overloading, protected members, decorators (classmethod, staticmethod, etc), dunder

methods, and polymorphism.

When learning these languages, it was not always a smooth learning experience. After

learning the basics from functions, loops, pointers, and more, I had some issues moving

forward. The challenges that I faced existed when I was working with object-oriented

programming. OOP is a topic that I have never covered so learning every detail was

necessary to be able to understand gem5. Within OOP, I had a hard time covering the

specific uses of public, private, and protected access modifiers. Access modifiers are used

with inheritance by which a derived class obtains the base class’s attributes such as

functions and variables. To comprehend this issue, I used online resources such as

 7

YouTube. The channels that I obtained information from was from Corey Schafer &

Bucky Roberts (thenewboston). Both of these channels are beginner-friendly and help

explain concepts clearly. I learned Python from Corey Schafer and C++ from Bucky

Roberts [7], [8].

From their lessons, I figured out the specific uses of access modifiers. When using the

public modifier, methods and variables can be accessed by the base class, subclass, and

outside the class. In other words, the instances can be accessed anywhere under the public

access modifier. Furthermore, private access modifiers can only be accessed by the base

class. The subclass and outside the class do not have the authorization to use the instance

methods or variables. Protected methods or variables can only be accessed by the base

class and derived subclass through inheritance.

Table 0.1 - Table of access modifiers & their capable inheritance, copied from [9]

 8

Chapter 3: Starting gem5

3.1 Simple configuration script

Eventually, after establishing the fundamentals of Python, C++, and object-oriented

programming, I was able to begin teaching myself gem5. Before I could move further

into the development of gem5, I had to set up gem5. I was able to gather the required

dependencies and build a development environment with the help of Mr. Rafique. Once

the setup was finished, I worked on creating a simple configuration script. In this script, I

made a single-core computer. The simple configuration script was a program that is

created to introduce new users to gem5. I constructed numerous components for the

simulation. First of all, I created a system object and began establishing the clock domain

by editing the frequency & voltage the clock domain receives. The frequency that I set

the clock domain was 1 GHz. I then developed the system’s memory to 512 MB, a

memory bus, CPU, memory controller, threads, interconnects, and the simulated test file.

The system memory was set to timing mode which is one of the three modes that are used

in gem5. Timing mode simulates the most realistic output data by the idea of detailed

access. The other two modes are atomic and functional. Atomic is used for

experimentation by accessing ports and completing requests faster. Finally, the functional

mode is used for debugging purposes. In general, those who use gem5 use timing mode

as a default setting [10].

The instructions that were used to set up gem5 can be found under gem5 resources

Once I finished creating the simple configuration script, after a few fixed typos, I ran the

program by rebuilding gem5. For future users, rebuilding gem5 is a common process

when creating new configuration files/SimObjects. SimObjects are simulated objects that

a user creates for testing. SimObject is a base class which individuals can use to derive a

 9

subclass and create their simulated objects. For the simple configuration script, I ran a

premade hello world file provided by gem5 and it ran as expected.

Figure 0.2 - Running simple configuration script, copied from [11]

Subsequently, after running the simple configuration script, a diagram of the simulated

architecture under the m5out directory. The diagram is shown in Figure 0.3 below:

Figure 0.3 - Diagram of simulated architecture made from the simple configuration

file, copied from [12]

 10

3.2 Adding cache to the configuration script

I have only scratched the surface of gem5’s capabilities thus far. To gain a deeper insight

toward gem5, I continued learning through the provided gem5 book [13]. Therefore, I

moved onto adding cache to the simple configuration script. There are different kinds of

caches that were incorporated. The two caches that I assembled are a L1 cache

(instruction, data) and a L2 cache. The difference between these caches is that the L1

cache has less storage capacity than that of L2 but is faster than the L2 cache. These

caches are connected to memory buses that address and controls the flow of data. The

purpose of these caches makes the computing power of the computer faster. Allowing

data to travel at a faster rate due to it being a buffer between the CPU and RAM. In other

words, caches allow for a faster data transfer than that of RAM. Based on what has been

said, we can use Figure 0.2 and 0.5 to prove that adding caches improves the speed of

which data is processed. Figure 0.2 shows the single-core computer’s run time as

454507000 ticks compared to Figure 0.5 with a run time of 56435000 ticks. This was

recorded when running the premade hello world file provided by gem5.

Figure 0.4 - System with two-level hierarchy, copied from [14]

 11

Figure 0.5 - Running simple configuration file with caches, copied from [15]

Figure 0.6 - Addition of a L1 & L2 Cache, copied from [16]

 12

3.3 Statistics, outputs, and using default configuration scripts

The next topic that I covered did not require any coding but more of an understanding. To

understand this topic, understanding gem5’s purpose is required. The purpose of gem5 is

to simulate computer systems and to analyze the data that is outputted. The data that is

recorded can be found under m5out directory with files: config.ini, config.json, and

stats.txt. Each of these files contains a purpose when it pertains to the use of data. For

example, config.ini lists all SimObjects that have been created with their parameters.

Config.json is similar to config.ini but in JSON format. Stat.txt contains the statics that

the simulation recorded. These files are available for research use.

Moreover, the proceeding section to statistics and outputs to understand the default

configuration scripts. In the gem5 directory, there are two default configuration files, one

for each simulation model. These modes are simulated emulation (se_mode) and full

simulation (fe_mode). The files provided are se.py and fs.py which both contain a guide

to simulating in each mode. These files contain a whole scope for each mode. The only

action that the user would have to conduct is to change is the parameters. Using these

files allow for quick access to simulating computer architecture; thus, concluding Part I

from the gem5 book [13].

Chapter 4: Modifying and Extending gem5

4.1 Setting gem5 development environment with style guidelines

When continuing gem5, there was a point where I was given a guideline to follow for

formatting purposes. Since I did not plan nor was it required for the internship to

contribute to gem5, I did not follow the style guidelines. I received approval from my

mentor, Mr. Rafique since my main objective was to learn gem5.

 13

4.2 Creating a simple SimObject

By now, I am going to be referring to Part II of the gem5 book. This is the part where it is

very important to pay attention to. When I worked on this part, I had an abundance of

issues, most were minor but could make or break the simulation. My issues arose in the

event-driven portion of Part II. In regards to creating a simple SimObject, I did not have

any problems. SimObjects are very simple and straightforward to establish. However,

knowing how to develop SimObjects requires an understanding of linker files.

In gem5, creating a SimObject requires creating five individual files. One file is created

to instantiate the object which is known as a configuration file. The instantiation of a

SimObject is done in python. In this file, the object is created with a specified name and

C++ header (cxx_header), see Figure 0.7. The name of the header is used to create the

header file in C++. The purpose of a C++ header file is to construct a class from

SimObject which declares user-added functions and variables under access specifiers

(public/private/protected), see Figure 0.8. On the other hand, implementation files are

used to write the code for the functions declared in the header files, see Figure 0.9.

Figure 0.7 - Creating a configuration file, copied from [18]

 14

Figure 0.8 - Creating a header file, copied from [19]

Figure 0.9 - Creating an implementation file, copied from [20]

After these three files are created, configuration, header, and implementation, there are

still two necessary files. One of those files is called a sconscript. Since gem5 is built on

SCons, an open-source build tool, a sconscript is necessary to compile the C++ files and

to parse the Python file [17]. Within the sconscript, the SimObject and implementation

files are stated. Once the following files above are created, gem5 will need to be rebuilt

with scons (e.g. scons build/X86/gem5.opt) to compile and link the files for gem5 to run,

see Figure 1.0. Finally, we can create the final file, another configuration file known as a

 15

run script. This is the file that will be run on the terminal when testing the new

SimObject. In this script, it is necessary to include an instantiation of the root object

which is required for all gem5 instances. Then we instantiate the new SimObject that is

created. Next, we call the instantiates on the m5 module to enable the simulation to run.

At last, we can call this run script when building gem5 (e.g. build/X86/gem5.opt

src/tutorial/run_hello.py), see Figure 1.1. A more in-depth explanation can be found in

the gem5 booklet [13].

Figure 1.0 - Creating a Sconscript, copied from [21]

Figure 1.1 - Creating a run script configuration file, copied from [22]

4.3 Debugging gem5

Debugging in programming is used to find errors in the code whether it be logical or

computer compiled. In this section, I learned how to debug gem5 by creating debug flags.

 16

Debug flags help identify errors in a simulation by knowing what the simulation is doing

at specific times. I had no issues developing the debug flags.

Figure 1.2 - Debug flags example running simple config script, copied from [23]

4.4 Event-driven programming

Event-driven programming is a notable feature that gem5 supports. When working with

event-driven programming, the simulation triggers events that are queued at specific

times. While I was working on event-driven programming, I encountered a lot of

problems. This is due to the addition of problems being stacked upon another. For

example, since I was unable to figure out the error after researching online, reviewing

through each file, looking over error codes, I started over numerous times. Due to me

starting over, I had multiple files that were duplicates of one another. Therefore, when I

compiled gem5, the error got longer and kept telling me the file/object has already been

created elsewhere. After talking with Mr. Rafique, I deleted the duplicate files and tried

to debug from the source files. After reviewing my source files, I had forgotten a few key

components. The components I forgot to add were a few debug flags that I did not

incorporate. Once the debug flags were implemented, my program worked as intended.

 17

Figure 1.3 - Event-driven programming, copied from [24]

4.5 Adding parameters to SimObjects

Furthermore, the next topic on the list that I covered is parameters. Parameters allow for

additional attributes to be added to the simulation. For instance, the parameters that I

added are a time-to-wait and number-of-fires. The time-to-wait parameter allows for a

delay while the number-of-fires enables a set amount of events to be processed. I had

very few issues when working with parameters. I just had to fix a few typos and make

sure I had all the necessary files.

Figure 1.4 - Adding parameters number-of-fires & time-to-wait, copied from [25]

 18

4.6 Creating a memory system

Creating a memory system is done by developing the interaction of how information is

sent. In computers, the information in the form of packets that are sent across ports. The

two types of ports that are used in gem5 are called the master and slave ports. The master

port sends requests to the slave port. Therefore, the slave port receives the request from

the master port and then sends a response back to the master port. The use of these ports

allows for information to be traveled throughout the computer. To demonstrate the travel

of information through the computer we can visualize how a CPU works. A CPU is the

central processing unit which processes all the data for a computer to work. For instance,

a 1 GHz CPU can carry out one billion instructions per second [26]. The instructions are

then delivered to and from memory by the master and slave ports. The packets of

information gathered back from memory through the master and slave ports, is then sent

to the CPU where the information is processed.

Figure 1.5 - Master and slave ports, copied from [27]

When creating these ports in gem5, I had to create the requests and responses that the

ports will get. This is shown in Figure 1.5 above. In the grand scheme, a master port

 19

sends requests and receives responses while a slave port receives the requests (and

executes them) and then sends the response back to the master port.

4.7 Creating a cache object

In this section, I created a cache object. This is similar to the cache object made from 3.2.

A cache will enable the simulation to access data faster. This is due to quicker access to

information than accessing from memory.

Figure 1.6 - Difference when adding a cache object, copied from [28]

Figure 1.7 - Diagram of cache object, copied from [29]

 20

Chapter 5: Full System Simulation

5.1 Full system mode

Full system simulation is sectioned in Part V which is the final part offered by gem5. My

internship period was running out therefore, I moved over to Part V. Everything up to this

point has been done using the simulated emulation mode. Full system simulation is a

different mode that gem5 provides which was started in 3.3. In this mode, a full system is

replicated and relies on the hardware that the simulation runs on. The full system

simulation allows for a more accurate way of simulating the run time and processes.

When using this mode, the user needs a disk image to run, in my case, I used the x86

Linux image. The disk image is used to run as the operating system for the simulation.

However, setting up this mode for simulations takes a considerable amount of time. For

instance, it could be hours, days, or even weeks to start up the simulation. Therefore, I

was unable to test this mode further. I waited for hours with little to no results. A diagram

of the simulated system can be found on my website [30].

 21

Conclusion

gem5 is a modular full computer system simulation platform for architecture research

which also includes microarchitecture of a processor. The gem5 simulation platform is

supported by contributing individuals and several companies: the National Science

Foundation, AMD, ARM, Hewlett-Packard, IBM, Intel, MIPS, Sun, Lucent, and the

Alfred P. Sloan Foundation [5].

The capabilities of gem5 have allowed for further research by those who are interested in

computer architecture. The ability to simulate a full system by being able to establish

connections, create components, and to control the flow of information all modularly

makes gem5 very beneficial.

Overall, my internship experience at the University of Illinois at Chicago has given me a

great deal of insight on gem5. I started from scratch by learning about two new

programming languages. From there, I was able to start creating my very first

configuration script for simulation. As the weeks passed, I got more in-depth knowledge

of the workings of gem5. I was able to create different modular objects such as a memory

system, cache, and other interconnects. Moreover, I gathered more of an understanding of

how a computer works down to the smallest of components.

I would like to give another thank you to those who have helped me acquire this

opportunity. Also, I would like to thank Mr. Muhammad Rafique and Ms. Zhichun Zhu

for helping me throughout my internship.

 22

References

[1] “Simulation Process.” GitHub,

github.com/dependablecomputinglab/csi3102-gem5-profiling.

[2] Puiu, Tibu. “Your Smartphone Is Millions of Times More Powerful Than All of

NASA's Combined Computing in 1969.” ZME Science, 15 Feb. 2019,

www.zmescience.com/research/technology/smartphone-power-compared-to-apoll

o-432/.

[3] Moore's Law, www.mooreslaw.org/.

[4] “Introduction.” gem5, gem5.org/Introduction.

[5] “Main Page.” gem5, gem5.org/Main_Page.

[6] “The gem5 Simulator.” ACM SIGARCH Computer Architecture News, ACM,

dl.acm.org/citation.cfm?doid=2024716.2024718.

[7] Roberts, Bucky. YouTube, www.youtube.com/user/thenewboston.

[8] Schafer, Corey. “Corey Schafer.” YouTube, www.youtube.com/user/schafer5.

[9] “What Are the Differences between the Private, Public and Protected Access

Specifiers in c?” Quora,

www.quora.com/What-are-the-differences-between-the-private-public-and-protec

ted-access-specifiers-in-c.

[10] “General Memory System.” gem5,

gem5.org/General_Memory_System#Atomic.2FTiming.2FFunctional_accesses.

[11] Palomo, Jim. Simple Configuration Script.

[12] Palomo, Jim Diagram of Simple Configuration Script.

[13] “gem5 Tutorial.” gem5, learning.gem5.org/book/index.html.

[14] Adding Cache to the Configuration Script. gem5,

learning.gem5.org/book/part1/cache_config.html.

[15] Palomo, Jim. Running Simple Configuration File with Caches.

[16] Palomo, Jim. Diagram of the Addition of L1 & L2 Caches

[17] “A Software Construction Tool.” SCons, Scons Foundation, scons.org/.

 23

[18] Palomo, Jim. Hello Object File.

[19] Palomo, Jim. Hello Header File.

[20] Palomo, Jim. Hello Implementation File.

[21] Palomo, Jim. Hello Sconscript File.

[22] Palomo, Jim. Hello Run Script.

[23] Palomo, Jim. Debug Flags for Simple Configuration Script.

[24] Palomo, Jim. Event-Driven Programming.

[25] Palomo, Jim. Adding Parameters: Number-of-Fires & Time-to-Wait.

[26] “The CPU and the Fetch-Execute Cycle - Revision 2 - KS3 Computer Science -

BBC Bitesize.” BBC News, BBC,

www.bbc.co.uk/bitesize/guides/zws8d2p/revision/2.

[27] Learning gem5. gem5, learning.gem5.org/book/part2/memoryobject.html.

[28] Palomo, Jim. Difference When Adding a Cache Object.

[29] Palomo, Jim. Diagram of Cache Object.

[30] Personal Portfolio. Jimppalomo.github.io.

[31] gem5-dev repository. https://github.com/JimPalomo/gem5-dev.

 24

